Selection of 20 Research Catchments

Ergolz
- Surface: 261 km²
- Mean elevation: 910 m (a.s.l.)
- Alluvium, Marl, Limestone
- Forest, pastures, arable land
- Isotope data:
 - 1 Hydrometric station: bi-weekly, started in July 2010
 - Precipitation: NAQUA

Emme
- Surface: 117 km²
- Mean elevation: 1189 m (a.s.l.)
- Tertiary Molasse, Alluvium, Flysch
- Forest, pastures, bare rock
- Isotope data:
 - 2 Hydrometric stations: bi-weekly, started in June 2010
 - Observation well: regularly, started in October 2010
 - Precipitation: NAQUA and 2 local gauges (bi-weekly)

Alp
- Surface: 46.6 km²
- Mean elevation: 1156 m (a.s.l.)
- Tertiary Molasse, Flysch, Limestone
- Forest, pastures, bare rock, arable land
- Isotope data:
 - 2 Hydrometric stations: bi-weekly, started in June 2010
 - Observation well: monthly, started in February/March 2011
 - Precipitation: NAQUA and local gauge (bi-weekly)

Murg
- Surface: 7 km²
- Mean elevation: 956 m (a.s.l.)
- 53.6% pastures, 20.5% forest
- Tertiary Molasse, Marine, fluvioglacial deposits
- Isotope data:
 - 1 Hydrometric station: bi-weekly, started in July 2010
 - Observation wells: monthly, started in February 2011
 - Precipitation: NAQUA

Objectives

Problem: During times of critical low flow, streamflow is fed by groundwater discharge to the stream.

Main objectives of workpackage 3
- to improve the understanding and modeling of groundwater discharge and hence baseflow
- to characterize the vulnerability of a variety of different catchments to drought

Stable isotope signal in precipitation

Stable isotope signal in streamflow

Surface and groundwater model

Groundwater model

Spatial-temporal explicit simulation of isotope signals

Conceptionally lumped simulation (transfer function) of isotope signals